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Abstract 

Evaluation of temperature factors from a harmonic 
lattice-dynamical theory of molecular crystals has been 
applied to some aromatic hydrocarbons in the non-rigid 
case: i.e. mixing of lattice vibrations with the lowest- 
frequency internal modes. The calculations start from 
known atomic coordinates, unit-cell parameters and 
symmetry operations, using Cail fano-Neto potentials 
for in-plane modes, Williams IVa potentials for inter- 
molecular interactions, and an overall value of 0.9 
nN A for any twisting around C - C  bonds. Molecular 
motions inside the crystal are described on the basis of 
normal coordinates of the isolated molecule, by 
applying Gwinn's method. For some molecules (ben- 
zene and naphthalene) the rigid-body approximation is 
adequate for the carbon-atom framework, and practi- 
cally no coupling occurs between the lattice vibrations 
and the internal motion. For anthracene and phenan- 
threne, there are differences between rigid-body and 
non-rigid estimates of temperature factors. Molecular 
vibration tensors T, L, and S can be calculated, and 
also a general molecular displacement matrix (tensor). 
including even the internal modes (W), which permits 
extension of the rigid-body analysis to non-rigid 
molecules. 

Introduction 

The problem of calculating temperature factors in a 
harmonic approximation via the Born-von K/trm/tn 
lattice-dynamical procedure has been the object of 
many papers. Such calculations, if feasible on a routine 
basis, would be particularly useful to crystallog- 
raphers, not only as a theoretical check of experi- 
mental results, but as a practical tool to derive some 
information which is not accessible from Bragg-peak 
measurements. 

For instance, a description of thermal motion in the 
crystal is essential for correcting bond lengths for 
thermal libration, especially when the molecules are not 

rigid (see especially Busing & Levy, 1964; Scheringer, 
1972b). Even the so-called 'rigid bodies', i.e. the 
molecules which look as such from a least-squares fit of 
temperature factors, are not necessarily rigid: this 
applies especially to the motion of the external H atoms 
(Johnson, 1970a; Scheringer, 1972a; Gramaccioli, 
Filippini & Simonetta, 1982). 

Another possible application of such calculations 
concerns determining the electron density in crystals. 
For instance, deriving significant information on such 
density within 0.3 A from the atomic nuclei is often 
precluded, owing to the inaccuracy of most tem- 
perature factors which have been obtained from X-ray 
diffraction (Stewart, 1968). Moreover, in many cases 
the decomposition into 'internal' and 'lattice' vibrations 
can be quite useful for bridging the gap between the 
static electron density of molecules and the corres- 
ponding dynamic one, which is experimentally ac- 
cessible. This decomposition cannot be deduced from 
any Bragg measurement (Hirshfeld, 1977). 

Since the crystallographic estimates of temperature 
factors are affected by thermal diffuse scattering (see 
for instance Rouse & Cooper, 1969; Willis & Pryor, 
1975; Helmholdt & Vos, 1977), application of lattice 
dynamics for correcting Bragg-peak measurements for 
this effect might be essential for accurate work. A good 
proof for the reliability of such calculations can be a 
consistent agreement with all kinds of available 
experimental data: these are, for instance, Raman- and 
infrared-active vibration frequencies, and also tem- 
perature factors, which implicitly include information 
throughout the whole Brillouin zone. 

For the general case of a non-rigid molecule, the 
calculations can be very expensive, owing to the 
considerable size and number of dynamical matrices to 
be diagonalized. On the other hand, we expect that the 
molecular deformations which are coupled with lattice 
vibrations should correspond essentially to the internal 
modes with the lowest frequencies: these modes are 
often a minority with respect to the total. For these 
reasons, an extension of the rigid-body lattice-dynami- 
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cal procedure involving a few additional internal 
low-frequency modes might be a comparatively in- 
expensive and efficient routine. 

Method of calculation 

In the harmonic lattice-dynamical theory of crystals 
the anisotropic temperature-factor coefficients Bu(x )  
for a certain atom x are obtained from the so- 
called mean-sq_uare displacement matrix U(x) = 
(u(x)[u(x)] r) through-B(k) 2~rCrU(x)C. Here B(x) 
is the matrix whose elements are the Bu(x) 's  and C 
is the transformation matrix between the-(reciprocal) 
crystal axes and the reference system (see, for instance, 
Willis & Pryor, 1975). In Cartesian co-ordinates, we 
have 

U(x) = (Nm~)-'  Y E~(q) c%(q) -2 
~q 

× e(xl ~,q) [e*(xl ~q)]r, (1) 

where Eo(q), i.e. the average energy of the ~, mode for a 
certain value of the wave vector q, is evaluated as 

Eo(q) = hc%(q) (½ + {exp [hooo(q) /kT-  11}-'). (2) 

Here ooo(q) is the frequency of the mode, m~ is the 
mass of the atom, and e(xl ~q) is the mass-adjusted 
polarization vector of the atom vibrating in such a 
mode. Both frequencies and polarization vectors are 
obtained from diagonalization of mass-adjusted 
dynamical matrices D(q), one for each value of q as 
derived from an appropriate Brillouin zone sampling. 
Elements of the dynamical matrices D(q) are given by 

D ' = ~. ~,~,~,(xx' l ') ~,~,(xx Iq) (m,,m~,) -1/2 
l, 

× exp i qAr (xx '  I'), (3) 

where the O,~,~,'s are the corresponding components of 
force constants relative to the coordinates a and ~t', 
A r ( x x ' l ' )  is the distance between the origins of 
asymmetric units. The summation index l' refers to 
different unit cells [see Willis & Prior, 1975, ex- 
pressions (3.10)1. 

For molecular crystals, the most appropriate basis is 
given by the normal coordinates of the isolated 
molecule, including the mass-adjusted translational and 
rotational coordinates (Taddei, Bonadeo, Marzocchi & 
Califano, 1973; Bonadeo & Taddei, 1973; Neto, 
Righini, Califano & Walmsley, 1978; Bonadeo & 
Burgos, 1982). The procedure of the calculations which 
are performed on such a basis is essentially the same as 
for the rigid body, which is a well known particular 
case (see, for instance, Cochran & Pawley, 1964; 
Pawley, 1967, 1968, 1972a,b; Willis & Pryor, 1975). 
For calculating normal coordinates, the method pro- 
posed by Gwinn (1971) has proven to be the most 

practical, as we have already shown (Gramaccioli, 
Filippini & Simonetta, 1982). 

Force constants • can be assumed to be a sum of 
contributions (t~lnt) internal to the molecule and 
external (~ext)" Since the ~ext'S are obtained more 
easily in a Cartesian reference system (preferably the 
principal axes of inertia), transformation to normal 
coordinates is obtained from 0 x = V r 0 x V, where the 
symbols x and Z indicate the mass-weighted Cartesian, 
or the normal coordinate system, respectively. Here V 
is a matrix whose columns are the eigenvectors qt of the 
(mass-adjusted) dynamical matrix M of the isolated 
molecule.* Since the intramolecular potential is diag- 
onal in a normal-coordinate basis, and to~ qt = Mqt, 
the contributions ~ . t  are equal to the squares of the 
internal frequencies ogt; such contributions involve the 
'self-matrices' ~(tcx' 0) only (see Bonadeo & Burgos, 
1982). 

The major advantage of a normal-coordinate basis 
derives from the possibility of having a drastic 
reduction in size of the dynamical matrices: this 
happens because these matrices, if referred to such a 
basis, can be easily factorized. In other words, in line 
with the approximation that only the low-frequency 
internal modes can interact with the lattice motion, the 
normal coordinate basis necessary for lattice-dynami- 
cal calculations can be restricted only to those normal 
modes (of the molecule) which correspond to the 
frequencies which are inferior to a pre-assigned limit 
~L. This reduction in size will correspond to a 
satisfactory approximation if the calculated values of 
temperature factors remain stationary on raising co,. 
As is shown in Table 2, such a convergence takes place 
very early for the molecules which are considered here, 
and the matrix V can be accordingly reduced to a mere 
'strip' of a few columns; if the number of such columns 
is six (five for a linear molecule) the calculations 
become the same as for the rigid body. 

The contribution of the highest-frequency modes to 
the displacement matrices U(x) are supposed to be 
constant throughout the whole Brillouin zone, and to 
remain the same as for the isolated molecule. This 
contribution is given by the various terms in (4): 

U(x) = m~ -1Z Et ogt -2 e(KI 0 [e*(xl ~)]r, (4) 

which corresponds to (1). Here the polarization vectors 
e(t¢1~ correspond to blocks of those qt's which are 
excluded from the matrix V, and E t is the average 
energy of an internal mode, which can be obtained 
from (2). 

This approximation is justified also by observing the 
behaviour of the highest branches of the dispersion 

* Here also the eigenvectors corresponding to zero frequency 
should be included, and in this way the normal-coordinate basis 
includes molecular translation and rotation. 
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curves. A small increase (of a few cm -~) is observed to 
take place for the higher frequencies, on passing from 
the free molecule to the crystal; however, the effect 
upon temperature factors is negligible, because of 
weighting by 03[ 2 . 

From diagonalization of the dynamical matrices in 
normal coordinates, the best way to obtain tem- 
perature factors does not involve immediate trans- 
formation to Cartesian coordinates. 

A mean-square displacement matrix (W) relative to 
all the molecule can be obtained as for U(K) in (1): 

W =  (vv r)  = N - '  Z E,  (q) c%(q) -2 p(~q) [p,(~/q)lT, 
oq 

(s) 
where E~,(q) is given by (2), p(~q) are the eigenvectors 
of the dynamical matrix D(q), and v indicates the 
displacement in terms of internal normal translational 
and rotational (mass-weighted) coordinates. Trans- 
formation of W to a mean-square displacement matrix 

relative to Cartesian coordinates can be obtained as 
~'~ = Vm -1/2 W m  -1/2 V T. Here m is the so-called 'mass 
matrix', which is formed by repeating each of the 
atomic masses three times along the diagonal and by 
putting all other elements as zero. 

The 3 x 3 blocks along the main diagonal of fl are 
the atomic mean-square displacement matrices U(x), 
and they are identical with the results which can be 
obtained from (1). The off-diagonal blocks are identi- 
cal with the so-called 'coupling tensors' U(xx') = 
(uQc) [u(x')]) r between the displacements of the atoms 
x and x'; these tensors are essential for bond-length 
correction in the general case (Johnson, 1970b; 
Scheringer, 1972b), and cannot be obtained from the 
usual diffraction data. 

When a limited number of internal degrees of 
freedom is included in the lattice-dynamical calcu- 
lations, W is a relatively small matrix, if compared to 
l'~. When the latter is obtained from W with a restricted 
basis, the contributions of the highest internal fre- 
quency modes should be added (see for instance 
Gramaccioli, Filippini & Simonetta, 1982). 

It might be interesting to check which are the 
relationships between W and the tensors T, L, and S of 
Schomaker & Trueblood (1968). For this purpose, W 
can be partitioned as follows: 

(Wext i Weorl 
W = \(~¢--o--)- r- i--~; i] , (6) 

where Wext, Win t and Woo r refer to external (trans- 
lational-librational), internal and correlation between 
external and internal motions, respectively. 

By defining um°l(Kl~/q) and Bm°l(/~) as a dis- 
placement vector and matrix of the molecule  K [see 
equation (6.3)of Willis & Pryor (1975)], we have 

Bm°l(K) = ~ um°l(/¢l Ip'q) (u*m°l(/¢l ~q))r 
~q 

: (um°l(K)[um°I(K)]T>, (7) 

where um°~(x) corresponds to its atomic counterpart 
u(x), and ( . . . )  indicates the time average (see Willis & 
Pryor). Since um°l(x) = D -~/2 v, we have 

Bm°l(/¢) = (um°I(K ") [um°l(K)] T) 

= D- '2 (vv  T) D--2 

= D-l/2 Wext D-I/2, (8) 

where D is a matrix which is formed by repeating the 
molecular mass three times and the principal moments 
of the inertia of the molecule along the diagonal and by 
putting all other elements to zero. The above written 
equations, of course, hold only if Bm°l(/¢), um°l(/(), etc. 

are referred to the principal axes of inertia. 
Since [see Willis & Pryor, equation (6.4)] 

I st Bmo,(x ) = __.T____~. = D -1/2 Wex t D -1'2, (9) 
\(s*)r i L] 

the relationships between all these tensors is clear. 
Whereas for a rigid-body tra.nsformation to Bm°t0c) 
according to (8) may be preferable, for the general 
case, i.e. when internal motions are also included, it is 
difficult to define a matrix corresponding to D and 
involving all degrees of freedom. For this purpose, in 
this work we are directly referring to W in showing the 
results of our analysis (see Table 5). 

Applications and discussion 

As a first application of these calculations, a series of 
aromatic hydrocarbons such as benzene, naphtha- 
lene-d 8, anthracene, phenanthrene and pyrene has been 
considered. These substances are the same which have 
been treated in a previous work by Gramaccioli, 
Filippini & Simonetta (1982; here onwards GFS), 
where the contributions of internal and external modes 
to the temperature factors were considered separately. 

The potentials which have been used here are the 
same as in GFS: that is, for in-plane vibrations, the 
force field of Neto, Scrocco & Califano (1966) has been 
used and, for out-of-plane vibrations, a force constant 
of 0.9 nN A t  has been assigned to all twistings around 
C - C  bonds, irrespective of the r-bond order. This 
treatment of out-of-plane vibrations gives a sub- 
stantially good agreement with experimental data for all 
these hydrocarbons (see GFS and Table 1). Such 
twisting force constants could be further improved, 
particularly if a better fit to vibrational frequencies as 

t In our last work (GFS) this value was erroneously indicated as 
0.9 nN A -l. 
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they are observed in the crystal is considered. The 
search for an improved set of out-of-plane potentials 
will be the argument of another paper centered on this 
subject (Filippini, Simonetta & Gramaccioli, 1983): 
here we are only concerned in showing examples of 
such temperature-factor calculations. On the other 
hand, no substantial changes involving refinement of 
the internal potential are expected to occur, since the 
greatest contributions to temperature factors are given 
by lattice modes. 

For van der Waals interactions we used the Williams 
IVa functions (Williams, 1967), with a maximum a u 
packing distance of 5.5 A and a C - H  distance b, 
standardized to 1.09 A, just as in GFS: the use of a, b~ 
semiempirical potentials of this kind has proved to be b, 
particularly valuable for reproducing the experimental a, au 
dispersion curves for naphthalene (Natkaniec et al., b, 
1980; Pawley et al., 1980), and of anthracene-d10 'q 
(Dorner et al., 1982). B3u" A u* 

The normal coordinates corresponding to the inter- B2: 
nal low-frequency modes which have been taken as a B2u 

B3: basis for our calculations (together with translational Bit 
and rotational coordinates) for all these substances are A, 
characterized in Table 1 (a)* B,, 

B 2g* 
An example of calculated frequencies at q = 0 for A, 

naphthalene-ds is reported in Table 1, and for anthra- 8,: 
cene in Table 2(a).* Here the agreement with the B,, Big* 
experimental data is satisfactory; the splitting and the A: 
shifts due to packing in the crystals are of the same A~ 

Blu order of magnitude as in similar calculations which B2: 
have been performed with a complete basis of all B,: 
internal modes (Taddei, Bonadeo, Marzocchi & B~,. Btu 
Califano, 1973; Pawley & Cyvin, 1970). We also Au. 
clearly see that on introducing additional internal B~ 
modes the frequencies of the others are perturbed only A~ Blu 
very slightly. B2u 

Examples of temperature factors (B's) relative to Btg, 
these hydrocarbon crystals are reported in Table 2, the A, 
complete set of results is reported in Table 3(a).* For a 
certain atom, the different lines refer to: (1) calcu- 
lations with a rigid-body model, where the con- 
tributions of lattice modes only are considered; (2) 
calculations with another rigid-body model, where the 
internal mode contributions are added to the results on 
the first line, and no mixing is assumed to take place 
between the lattice modes and the internal modes; (3) 
(4) (5) an increasing number (nr) of the internal 
vibration modes is assumed to mix with the lattice 
modes. These internal modes correspond to all the 
calculated internal frequencies which are below a 
threshold oh (which is specified in the last-but-one 

* Tables l(a)-5(a) have been deposited with the British Library 
Lending Division as Supplementary Publication No. SUP 38587 
(23 pp.). Copies may be obtained through The Executive Secretary, 
International Union of Crystallography, 5 Abbey Square, Chester 
CH 1 2HU, England. 

Table 1. Calculated values o f  vibration frequencies at 
q = 0 in the crystal (cm -1) for  various values o f  the 
limiting frequency o) L, and comparison with experi- 
mental data. 'Out-of-plane' modes are marked by an 

asterisk 

Naphthalene-d s at room temperature. 

Calculated 

Expefi- o )L=0 
mental (rigid) o) L = 400 o) L = 600 o) L = 1000 

42 39 39 39 
43 42 42 42 42 
49 49 49 49 49 
63 53 52 52 52 
70 66 66 66 65 
70 78 78 77 76 

100 86 86 85 85 
107 105 104 104 103 
102 106 106 105 104 
166 174 182-190 182-190 182-190 
193 191 213-213 213-213 212-213 
348 338 347-351 347-351 347-351 
328 343 346-349 346-349 346-349 
402 387 394-400 394-400 394-400 
410 417 422-425 422-425 
494 488 491-491 491-491 
494 493 495-497 495--497 
547 504 517-518 516-518 

506 513-516 513-516 
628 579 584-585 584-585 
590 618 623-624 621-622 
649 626 637-638 

638 648-649 
697 688 693-694 
738 748 751-752 
761 748 756-756 

(760) 759 764-764 
791 800 805-806 
828 802 804-805 

814 820-820 
831 818 822-824 
838 832 836-838 

(880) 836 838-840 
879 838 840-844 

(829) 846 851-851 
862 850 852-853 

Note: The experimental values are taken from Bree & Kydd 
(1970). Labelling is given for the lattice modes and internal 
modes according to the symmetry of the crystal, or the isolated 
molecule, respectively. 

column). The last line reports the corresponding 
experimental data: these have been derived from the 
literature (benzene: Bacon, Curry & Wilson, 1964; 
naphthalene-ds: Pawley & Yeats, 1969; anthracene: 
Lonsdale & Milledge, 1961; Mason, 1964; phen- 
anthrene: Kay, Okaya & Cox, 1971; pyrene: Hazell, 
Larsen & Lehmann, 1972; anthracene-d~0: Lehmann & 
Pawley, 1972; Chaplot, Lehner & Pawley, 1982). 
Additional calculated temperature factors for the 
hydrogen atoms in anthracene and naphthalene are 
reported in Table 4(a).* 

* See deposit footnote. 
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Table 2. Calculated temperature factors (x 10 4) 

Temperature factors are in the form 

T i = exp I - B l l h  2 + B22k 2 + B33 l 2 + 2Bl2hk  + 2Bl3hl  + 2B23kl)l 

For each temperature factor, the various fines refer to different 
models, starting with the rigid body (see text); the last line reports 
the experimental values, taken from the literature. 

Bll  B22 B33 Bt2 BI3 B33 col (cm -1) n L 

Benzene at 138 K 
C(I) 153 68 177 - 1  - 7  - 3  

158 70 183 - 2  - 7  - 4  
159 70 184 - I  - 7  - 2  400 2 
83 49 111 3 - 12 0 (observed) 

H(1) 236 72 274 17 5 2 
280 106 326 10 27 - 4  
282 105 328 14 28 0 400 2 
184 69 204 0 20 6 (observed) 

Naphthalene-d s at 298 K 
C(A) 346 492 205 35 145 - 4  

353 501 218 34 149 -1  
367 504 215 30 151 - 4  300 2 
370 508 217 30 153 - 4  400 5 
262 357 181 -12  115 3 (observed) 

C(B) 278 358 213 -11  112 -51 
285 367 226 -11 115 - 4 7  
300 370 225 -15  118 -51 300 2 
305 372 224 - 17 120 -52  400 5 
202 250 187 - 5 0  87 -31 (observed) 

D(A) 520 724 221 44 193 -33  
541 793 289 49 203 - 11 
585 797 267 31 214 -31 300 2 
589 803 265 30 215 -32  400 5 
432 561 197 -42  163 -17  (observed) 

Phenanthrene at 295 K 

C(2) 255 732 141 -35  - 9  - 4 2  
260 768 151 -35  - t 0  - 5 4  
286 793 148 -55  -12  - 4 0  220 3 
293 802 149 - 5 9  -11 - 3 9  300 5 
294 808 151 - 6 0  -11 -38  450 9 
237 604 132 -17  12 -15  (observed) 

C(7) 351 942 126 165 -6  - I t  
358 977 136 166 - 6  -23  
393 993 136 173 -11 - 1 0  220 3 
397 t001 137 170 -12  - 6  300 5 
401 1008 139 173 -12  - 6  450 9 
227 669 140 50 9 -56  (observed) 

Anthracene at 290 K 
C(1) 267 448 125 36 101 2 

287 458 148 39 120 5 
308 475 136 30 114 0 200 2 
314 479 136 28 115 0 300 5 
313 480 137 28 115 -1  405 8 
271 444 136 6 112 -22  (observed) 

C(7) 247 439 143 29 111 46 
266 450 166 32 130 50 
282 469 156 20 126 44 200 2 
286 473 156 19 126 45 300 5 
286 474 158 20 127 44 405 8 
260 468 144 16 114 61 (observed) 

Pyrene at 298 K 

C(1) 85 201 274 15 -18  -65  
90 216 279 21 -16  -63 
91 214 289 13 -21 -62  200 2 
92 215 292 12 -22  -63 300 5 
91 177 234 I0 23 -38  (observed) 

C(4) 81 135 302 - 8  53 7 
85 146 309 - 4  54 8 
89 149 317 -11 57 5 200 2 
91 150 320 -14  58 4 300 5 
86 123 283 - 8  89 26 (observed) 

Table 2 (cont.) 

BI1 B22 B33 B12 BI3 B33 col (cm - l )  n L 

C(5) 94 144 248 t0 54 24 
98 155 254 14 55 26 

103 157 261 8 57 24 200 2 
104 158 264 5 58 23 300 5 
98 151 242 15 93 47 (observed) 

C(16) 55 103 199 13 18 - 6  
59 113 203 16 20 - 4  
61 115 208 14 20 - 6  200 2 
61 115 211 t0 19 - 6  300 5 
53 90 170 8 43 1 (observed) 

H(I) 109 269 325 19 -46  -104 
132 340 366 47 -42  -91 
133 330 378 25 -51 - 9 0  200 2 
134 327 383 18 -55  -91 300 5 
119 279 343 9 -1  -86  (observed) 

H(2) 82 193 436 - 3 0  10 -74  
107 257 457 -15  15 -66  
108 252 471 -29  11 -67  200 2 
109 251 478 -35  9 -66  300 5 
100 226 437 - 6 0  63 - 77 (observed) 

H(14) 127 251 202 45 3 -4  
149 313 239 63 16 -4  
151 313 246 49 11 -3  200 2 
152 315 248 44 10 - 3  300 5 
158 287 217 36 56 49 (observed) 

Tables 2 and 3(a)* show that convergence is readily 
obtained, even by including a very limited number of 
internal modes in the lattice-dynamical calculations. 
The rigid-body behaviour of benzene and naphthalene 
is also evident, since the assumption of mixing internal 
and lattice modes does not involve any substantial 
variation in the calculated temperature factors. A 
substantial rigid-body behaviour can be claimed for 
pyrene on these grounds: for phenanthrene and 
anthracene, however, there are small, but definite 
deviations from rigid-body behaviour. For instance, for 
many atoms in these structures, the variations which 
can be observed between the calculated values which 
are reported in lines 1 and 2 are about the same as 
between lines 2 and 5. This implies that the differences 
in calculated temperature factors due to mixing internal 
and external modes (lines 1 and 2) are comparable with 
the separate contribution of the internal modes (lines 2 
and 1). These indications have a counterpart in the 
lowest vibrational frequencies of the isolated molecule: 
for anthracene and phenanthrene, such frequencies are 
of the same order of magnitude as thc highest lattice 
frequencies of the crystal, a situation which certainly 
does not happen for benzene and naphthalene. For 
anthracene, similar indications about a non-rigid 
motion of the molecule have been obtained also by 
Lehmann & Pawley (1972) and Chaplot. Lehner & 
Pawley (1982), from neutron-diffraction data. 

The movement of hydrogen atoms in most cases 
seems to be uncorrelated with lattice vibrations, since 
the differences in the calculated temperature factors 
which are due to mixing internal and lattice modes are 
usually negligible. This is in agreement with the 

* See deposit footnote. 
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Table 3. A comparison between various estimations o f  
the tensors T, L, S (x 104 ) (in A 2, rad 2, or A rad, 

respectively (6) Pyrene at 298 K 

(a) Schomaker -Trueb lood  from experimental data  
(b) Lat t ice-dynamical  rigid body 
(c) Latt ice-dynamical  non-rigid 

The reference system is a set of  Cartesian axes oriented along 
a*, b, a* × b, with the origin at the centre of  mass of  the molecule. 

(1) Benzene at 138 K 

T L 2(L) as (0)2 
(a) 117 - 6 2  --67 57 --23 --9 45.4 

219 --29 123 --27 24.4 
177 73 13.0 

(b) 318 - 3 4  -31  53 - 2  - 5  27.9 
296 -15  81 - I 1  19.5 

314 59 15.8 
(c) 320 -35  - 3 2  53 - 2  - 5  28.0 

298 -15  81 -11  19.5 
314 59 15-8 

(2) Naphthalene-d s at 298 K 

T t 2(L) as (°)2 

(a)t 340 102 -119  70 13 - 3 2  33.6 
343 -25  63 - 1 4  17.9 

445 52 9.0 
(b) 479 37 -48  70 - 3  - 8  28.4 

476 - 5  65 -15  23.5 
501 73 16.6 

(c) 494 38 - 5 2  71 - 3  - 8  29.0 
382 -3  67 - 15  23.8 

516 75 17.0 

(3) Anthracene-dlo at 290 K 

T L 2(L) as (0)2 

(a)t313 163 -235 50 13 - 3 4  31.0 
309 15 36 4 14.3 

355 67 5.1 
(b) 387 18 -96  31 0 - 5  18.1 

379 -14  24 - 1 2  9.9 
456 50 6.3 

(c) 420 23 104 32 0 - 5  18.8 
395 12 26 - 1 2  10.3 

484 52 6.8 

(4) Phenanthrene at 295 K 
T L 2(L) as (°)2 

(a) 444 46 72 55 5 0 21.4 
560 - 1 9  38 6 18.4 

566 64 11.7 
(b) 558 58 6 7 6 - 1 1 - 1 3  29.6 

594 20 47 7 19.9 
548 70 14.2 

(c) 593 61 8 81 - 1 2  - 1 4  31.6 
617 24 51 7 20.8 

578 74 15.2 

S 

(-11) - 1 0  21 
- 3  (18) - 9  

6 4 ( -7)  
- 3 4  - 2 9  2 

24 29 5 
16 1 11 

-36  - 2 9  3 
26 29 3 
16 1 12 

(5) Anthracene at 290 K 

T L 2 ( L ) a s  (o)2 

(a) 391 27 -93  23 0 1 10.0 
423 -25  24 0 8.0 

500 18 3.3 
(b) 400 17 -102  32 0 - 5  18.6 

391 -13  25 - 1 2  10.2 
470 51 6-4 

(c) 431 22 -110  33 0 - 5  19.2 
406 -11  26 - 1 2  10.6 

495 53 7.0 

Table 3 (cont.) 

T 

(a) 413 47 189 
354 33 

618 
(b) 486 78 - 9  

439 -21  
697 

(c) 504 81 -12  
454 -23  

727 

L 2(L) as (o)2 

53 - 1 8  4 23.0 
47 14 17.8 

49 8.1 
39 -13  5 19.1 

48 7 14.9 
42 8.5 

41 - 1 4  5 20.0 
50 8 15.6 

44 8.8 

789 

S 

(10) 10 - 3  
9 (0) 9 

- 7  - 6  (-10) 
1 - 6  3 

- 5  0 - 8  
- 4  1 - 1 0  

2 - 5  3 
- 6  -1  - 1 0  
- 4  1 -11 

"~ Including hydrogen (deuterium) atoms. 

conclusions of other authors, for example Pawley & 
Yeats (1969) and Johnson (1970a) on naphthalene and 
benzene. Some exceptions can, however, be noticed, 
especially for anthracene or phenanthrene, which are in 
line with the partial non-rigidity of these molecules. 

For all the hydrocarbons here treated, there is no 
essential difference between the lattice-dynamical esti- 
mates of the molecular vibration tensors T, L, S, which 
are obtained from a rigid-body and non-rigid lattice- 
dynamical model (see Table 3). There is often, 
however, a non-negligible difference with respect to the 
Schomaker-Trueblood interpretation of crystallo- 
graphic data: this difference is not great for T and L, 
whereas no agreement at all is obtained for S. Such a 
situation has already been noticed and discussed 
(Filippini, Gramaccioli, Simonetta & Suffritti, 1974): 
most of such differences probably derive from neglect- 
ing corrections for thermal diffuse scattering (TDS), 
since the observed temperature factors are nearly 
always systematically lower than the corresponding 
calculated values. An overall prospect of such agree- 
ment (or disagreement) in temperature factors is given 
in Table 4. Here, for each compound, the disagreement 
indices are given as: 

R = 100~ I Bidtobs ) -- Bijtcalc) l / ~  InUtobs) l 

and 

AB = 100 ~ (Bijtobs) -- Bij/calc))/ ~. Bljtobs ) 

and separate results are shown for different lattice- 
dynamical models. 

From Tables 2, 4 and 3(a)$ we see that the 
agreement between observed and calculated tempera- 
ture factors differs from case to case: a maximum 
difference is found for benzene, and a substantially very 
good agreement for anthracene and pyrene. Most of the 
differences are systematic, and involve values of the 
experimental temperature factors which are too small: 
this is exactly in line with the effect of TDS. For 
pyrene, however, no systematic disagreement is ob- 

J/See deposit footnote. 
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served, in spite of having crystallographic data not 
corrected for TDS. Such a situation had already been 
noticed by us (GFS) when dealing with the rigid-body 
motion of these molecules, and we had argued that the 
different behaviour of pyrene could be ascribed to 
non-rigid-body motion. This is, however, not the case. 
Probably here the strategy in collecting and utilizing the 
crystallographic data is important, as for any example 
in which accurate experimental values of temperature 
factors are obtained (cutoff of low-angle reflexions, 
scanning range and estimation of the background, etc.). 
It is probably significant that the neutron diffraction 
data for pyrene have been obtained in a particular way, 
taking also care of the limit of the peak 'so that tr(I)/I 
is as small as possible' (Hazell, Larsen & Lehmann, 
1972). For anthracene-d10 at 16 K, most of the 
observed disagreement is probably due to anhar- 
monicity. 

A slight, but definite increase of the calculated 
temperature factors can be noticed on passing from the 
rigid-body to the non-rigid model. This effect is due to 

Table 4. Overall agreement between observed and 
calculated temperature factors 

R (%) As (%) 

Benzene lattice only 32.9 - 18.9 
rigid 49.9 -34 .8  
non-rigid 49.8 -37 .  I 

Napththalene-d 8 lattice only 34.5 -30 .0  
rigid 43.7 -39 .9  
non-rigid 46.9 -41 .2  

Anthracene lattice only 9.8 - 1.0 
rigid 12.5 - 9 . 3  
non-rigid 14.6 - 11.4 

Phenanthrene lattice only 23.1 -10 .1  
rigid 26.7 - 13.8 
non-rigid 32.7 -24 .5  

Pyrene lattice only 21.8 12.8 
rigid 19.9 2.4 
non-rigid 20.2 2.4 

Anthracene-dr0 at 290 K lattice only 23.5 -- 15.6 
rigid 32-8 -26 .2  
non-rigid 37.3 -32 .8  

Anthracene-dr0 at 17 K lattice only 64.3 45.7 
rigid 54.2 40.6 
non-rigid 44.6 33.3 

'softening' of the lattice modes, when. mixing with 
internal moles is accounted for (see Table 1). Since the 
observed temperature factors are too low, this leads to 
the curious situation that the agreement with the 
experimental data becomes worse and worse, on 
improving the lattice-dynamical model (see Table 4). 
On the other hand, such lattice-dynamical results could 
be more significant than their experimental counter- 
parts, in view of the considerable errors in evaluating 
such data from X-ray or neutron diffraction; this point 
of view can be supported by the good agreement of our 
calculations with all the available spectroscopic data. 

Examples of the mean-square displacement tensors 
(W) are given in Table 5 (anthracene) and 5(a) 
(phenanthrene, pyrene).* These examples show how the 
Schomaker-Trueblood interpretation of temperature 
factors can be extended to all molecular crystals. 
Owing to the symmetrical nature of W, the upper 
triangular part only is represented. Reference of the 
various rows (and columns) is made, in sequence: (1) tb 
translational motions along the principal axes of the 
molecule; (2) to rotational motions around these axes; 
(3) to the internal degrees of freedom, in order of 
increasing frequency (up to w~). The relationship to T, 
L, and S has already been discussed (see above, 
formulae 8 and 9): here the first 3 x 3 block along the 
main diagonal corresponds to T, and second to L and 
the first 'off-diagonal' block to S. Another advantage of 
W is that of representing the mean-square displace- 
ments along any degree of freedom on the same scale 
(here atomic mass units x A2). 

On examining W, we can notice the strong pre- 
valence of the diagonal translational and rotational 
elements. Then we have the off-diagonal translational 
and rotational elements, or the translational-rotational 
elements (when they are non-zero). In all these 
molecules, which are not far from the rigid body, the 
diagonal elements corresponding to the lowest-fre- 
quency internal modes are often of the same order of 
magnitude as the off-diagonal translational and rota- 

* See deposit  footnote.  

Table 5. The tensor W for anthracene (atomic mass units x A2; referred to the principal axes of inertia) 

The rows and columns refer, in sequence, to translational,  rotat ional  and internal coordinates  in order of  increasing frequency (see text). 

10.2790 0.1512 -0 .4830 0.0000 0.0000 
7.1656 0.2268 0.0000 0.0000 0.0000 

6-2804 0.0000 0.0000 0.0000 
1.2886 0.1644 0.5114 

2.4114 -0 .0190 
4.8482 

0.0000 -0 .0102 -0 .1350 -0 .0044 0.0000 0.0000 --0.0116 
0-0690 -0.1026 0.0004 0.0000 0.0000 0.0182 
0.0372 0.0656 -0 .0056 0.0000 0.0000 0.0026 
0.0000 0.0000 0-0000 0.0132 -0 .0142 0.0000 
0.0000 0.0000 0.0000 -0 .0112 -0 .0078 0.0000 
0-0000 0.0000 0.0000 0.0172 -0 .0142 0.0000 
0.5132 --0.0016 -0 .0002 0.0000 0.0000 --0-0036 

0.2652 -0 .0018 0.0000 0.0000 0.0026 
0.1294 0.0000 0.0000 -0 .0008 

0.1160 -0 .0008 0-0000 
0.0880 

o.oooo o. o0o-o 
0.0000 0.0000 
0.0000 0.0000 
0.0022 0.0036 
0.0040 -0 .0024 
0.0016 0.0082 
0-0000 0.0000 
0.0000 0.0000 
0.0000 0.0000 
0-0002 0.0002 

0.0000 -0 .0002 0.0000 
0.0620 0.0000 0.0000 

0.0566 0.0000 
0.0538 
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tional elements, but their value rapidly becomes 
smaller, on going toward the higher frequencies. The 
off-diagonal elements of W involving internal motions 
coupled with translations and rotations are still smaller 
(by about one order of magnitude); finally, the elements 
corresponding to coupling between internal vibrational 
modes are generally so small not to be even noticeable. 

All this supports our approximation which excludes 
coupling of high-frequency internal modes. These 
examples also show the importance of W, which gives 
the amount of coupling between any normal co- 
ordinates through the whole Brillouin zone, to go 
beyond its possible applications to crystallography. 

In conclusion, we have shown that a complete 
lattice-dynamical derivation of temperature factors for 
any molecular crystal is no longer prohibitive, and can 
give useful information to crystallographers. Further 
application of this method to other groups of crys- 
talline substances, with more non-rigid character, is in 
progress. We hope that such application might eventu- 
ally become a routine procedure, especially if semi- 
empirical potentials which are as good as for hydro- 
carbons can be applied to other molecular crystals. For 
instance, in the absence of Coulombic interactions, 
such as here, a complete set of calculations of this kind 
can be obtained in a C PU time which ranges from 
about 5 to 15 min on a UNIVAC 1100/80 computer; 
therefore, we are not far from the cost of a least- 
squares refinement of a crystal structure. At the same 
time, a careful redetermination of temperature factors 
on some of these substances, after correction for TDS 
and peak-shape analysis by either neutron or X-ray 
diffraction, might be quite interesting, in order to have a 
good comparison for lattice-dynamical calculations. 
For non-rigid molecules, in particular, it will be 
interesting to see how much bond-length corrections 
could be improved; another possible application might 
be checking how much electron density maps can be 
improved by substituting these temperature factors in 
their experimental counterparts, and, moreover, if 
corrections for TDS are considered. 
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